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Moving contact lines at non-zero capillary number 
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Consider the unsteady motion of a fluid-fluid interface over and attached to a solid 
surface with one-dimensional periodic roughness in the limit of small capillary number 
C. We show that the macroscopic behaviour of the interface can be described, to 
leading order in C, in terms of well-defined continuum quantities, even though the 
complicated fluid motion in the neighbourhood of the contact line cannot. The key 
is that contact-angle hysteresis makes it possible to isolate the viscous stress 
singularity at the contact line, since for a sufficiently slowly moving fluid-fluid 
interface all the movement of the contact line occurs in a time much shorter than 
the macroscopic timescale. The effective ‘slip length ’ for the macroscopic description 
is shown to be velocity dependent and equal to aC-’, where a is the wavelength of 
the roughness on the solid surface. Finally, we consider surfaces with two-dimensional 
random roughness, and argue that they too would exhibit velocity dependent ‘slip 
lengths’, though the velocity dependence would be stronger in this case. These results 
combined with earlier work (Jansons 1985) explain why observed ‘slip lengths’ can 
be much larger than roughness dimensions, and why the degree of ‘stick-slip’ 
decreases with increasing speed. 

1. Introduction 
Consider the unsteady motion of a fluid-fluid interface between immiscible fluids 

over a solid surface with one-dimensional periodic roughness in the limit where, on 
a macroscopic scale, surface-tension forces dominate over viscous forces. The aim is 
to determine how the non-integrable stress singularity at the contact line of the three 
phases in the Navier-Stokes description of the motion (with a condition of no-slip 
at  solid boundaries) might be removed from the macroscopic description. The idea 
that roughness is important in the renormalization of the viscous stress singularity 
is not new (Hocking 1977, for example), however the importance of unsteadiness has 
been overlooked. If unsteadiness is ignored, Hocking (1977) found that the cutoff 
distance for the viscous stress singularity is of the order of roughness dimensions; 
though, in fact, unsteadiness is vital. 

A great deal of work has been done in the field of ‘moving contact lines’, and is 
reviewed by Dussan V. (1979). However, removal of the viscous stress singularity has 
been ad hoc. The cutoff distance of the viscous stress singularity, which is often called 
a ‘slip length ’ (Dussan V. 1976), is shown to be dependent on the speed of the contact 
line through the unsteadiness of the motion. We assume that the Navier-Stokes 
equation with a condition of no-slip is not valid in the neighbourhood of the contact 
line, and that there is some mechanism, on a microscopic scale by which contact lines 
can move. However, details of this mechanism do not determine in any way the 
leading-order solution for the macroscopic flow field, w r  the effective ‘slip length’. 

t From September 1986: Department of Mathematics, University College London, Gower Street, 
London WClE 6BT. 
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The mechanism of contact-line motion is important only in determining the error 
terms and range of validity of the solution, and not the form of the solution. 

One key idea is that the unsteady motion in the neighbourhood of the contact line 
is driven by the energy that is implicit in the contact-angle hysteresis, where 
contact-angle hysteresis is the phenomenon that the apparent angle of contact of the 
fluid-fluid interface with the solid surface is a discontinuous function of the direction 
of motion. Thus we expect the results to generalize to all types of rough surface, since 
in practice all rough surfaces exhibit contact-angle hysteresis. 

Throughout we consider the simplest systems that exhibit the physical effects of 
interest to highlight the important mechanisms, particularly the importance of 
unsteadiness. We shall restrict attention to systems of negligible inertia (i.e. zero 
Reynolds number). Though surfaces with one-dimensional roughness are not realistic 
and can exhibit quite different wetting behaviour from surfaces with two-dimensional 
random roughness (Jansons 1985), in $5 we argue that in this case we do expect 
similar results. However, the precise velocity dependence of the effective ‘slip length ’ 
is different. 

We begin in $2 by considering the viscous stress singularity and estimate the 
timescale for contact-line movement. This estimate is used in following sections to 
determine the range of validity of the analysis and the sizes of neglected effects. The 
lengthscale on which the continuum approximation breaks down does not appear in 
the results for a sufficiently ‘slowly moving’ contact line. So this section is included 
only for completeness, since for following sections we need only that contact lines 
can move (somehow) to determine the macroscopic flow field to leading order. 

In  $3 we consider the time evolution of the fluid-fluid interface close to the contact 
line as the contact line moves over the rough solid surface. A similarity solution is 
found for the relaxation process of the fluid-fluid interface under the action of surface 
tension. 

In  $4 the results of the previous sections are combined to determine the way in 
which a fluid-fluid interface with a ‘slowly moving ’ contact line moves over a solid 
surface with one-dimensional periodic roughness. We find a natural way to define a 
renormalized macroscopic description (regular at the contact line) from which an 
effective ‘slip length’ is calculated; the key is the similarity solution of $3. The ‘slip 
length’ determined is aC-’, where a is the wavelength of the roughness and C the 
capillary number, i.e. the ratio of viscous forces to surface-tension forces. 

Finally, in $5, we discuss the difference between the behaviour of a fluid-fluid 
interface moving over solid with one-dimensional periodic roughness and two- 
dimensional random roughness of the type considered by Jansons (1985). It is argued 
that the ‘ slip length ’ for two-dimensional random roughness is more velocity- 
dependent. We also explain why the size of the jumps in the ‘stick-slip’ motion of 
the contact line decreases with increasing speed. 

2. The viscous stress singularity 
The first difficulty encountered when solving a problem that involves a moving 

contact line on a perfectly flat surface is that the stress as given by the Naviedtokes 
equation has a non-integrable singularity at the contact line due to the no-slip 
boundary condition (Dussan V. 1979). We shall discuss briefly why this singularity 
is present, and make estimates for use in following sections. In  following sections we 
do not require a detailed analysis of the stress singularity at the contact line, only 
that contact lines can move. These estimates are important only in determining the range 
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of validity and error terms of the results. (Any reader already happy with the fact that 
contact lines can move, and able to estimate the rate of movement, should skip this 
section.) 

The stress, which grows like r-l (where r is the distance from the contact line), 
cannot be an accurate model on lengthscales where the continuum approximation 
breaks down. Define 6 to be the lengthscale of the neighbourhood of the contact line 
on which the stress singularity is renormalized microscopically. In  the analysis of this 
paper the value of 6 does not enter into the solution for sufficiently slowly moving 
contact lines on a rough surface, and only log6 appears in the error terms and 
conditions of validity. (For this reason we keep an open mind as the value of 6). 

A lower bound for 6 is molecular size, since it is clear that there is no mechanism 
by which a macroscopically observable stress can continue to grow on smaller 
lengthscales. An upper bound is the lengthscale of the longest-range forces implicitly 
included in continuum models, namely dispersion (or van der Waals) forces. 

2.1. Calculation of the contact-line jump time for a periodic solid surface 
We now establish what is meant by ‘slowly moving’ for use in following sections: 
A sufficiently slowly moving contact line on a solid surface with one-dimensional 
periodic roughness does not move at a constant speed (Jansons 1985), but jumps from 
one position to another, where it remains almost stationary until the next jump. A 
useful definition of the term ‘slowly moving’ therefore is the ratio of the time taken 
for a rapid jump to the time taken for the whole interface to move the same distance. 
We assume that the slow movement of the fluid-fluid interface many roughness 
dimensions away from the contact line (necessary to trigger the rapid jump) is 
negligible during the jump itself. Though the estimates made are valid for a variety 
of periodic surfaces, it is useful to begin with a very simple example to highlight the 
important physical processes. 

Consider a one-dimensional period solid surface of wavelength a that is flat except 
for thin ridges (or grooves) as shown in figure 1. We assume that all roughness 
dimensions are large compared with the cutoff length 6, and that there is a well-defined 
microscopic static contact angle Omit, for a contact line that has moved in only one 
direction (Jansons 1985). The microscopic static contact angle is the angle that the 
fluid-fluid interface makes with the tangent plane of the solid surface. 

Take the position of the contact line just before the jump as z = 0 (represented 
by A in figure l),  where z is the Cartesian coordinate along the solid surface in the 
direction of motion of the contact line. To simplify the analysis assume that the angle 
of the slope a of the solid surface at the point marked A is such that Omit + a is well 
within the range 0 to R ,  since this avoids unnecessary complications (Jansons 1985). 

We may now calculate the magnitude of the time taken for the contact line to move 
from point A to that marked B (in figure 1)  on the next ridge. When the contact line 
breaks from A the fluid-fluid interface is out of equilibrium, since there is a net 
surface-tension driving force per unit width of the contact line equal to 

Y[COS emit - cos (emit + a)], (2.1) 

which is balanced by viscous resistance. This resistance can be estimated from the 
solution of the classical corner-flow cutoff at distance 6 from the contact line, namely 
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4 a - -: 

FIQURE 1.  Defining diagram for contact-line jump process. 

where H(z )  is the vertical scale of the curved part of the fluid-fluid interface, p is  a 
typical viscosity, and Ujump(z) is the speed of the contact line. We also assume that 
the contact angle during the jump is the same to an order of magnitude as the static 
contact angle. Since H ( z )  x z (where ‘ x ’ means equal to an order of magnitude), 
combining (2.1) and (2.2) we find 

~ [ c o s  emit -cos (emit + a)] x Pujump(z) log - . (2.3) (3 
From (2.3) we find an expression for the time qump for the contact line to reach the 
next ridge a t  point B (in figure l ) ,  namely 

Hence 

[COS Omit - cos (emit + a)] dt x ,u log (9 dz. 

- 1ok3(;) 

q u m p  -- y [cos emic - cos ( emic + a)] ’ 
where we have neglected the order-unity terms as compared with log (a/&).  

If the fluid-fluid interface far away from the contact line is moving with speed U ,  
the macroscopic (or mean) time T,,,,, for the interface to move over one wavelength 
of the solid surface is 
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Thus the 'slowness parameter' 6, which is the ratio of the time for microscopic 
contact-line movement to the mean time for the fluid-fluid interface to move one 
wavelength, is 

E = Tjump/*macro 

where C = p U / y  is the (macroscopic) capillary number. 

the capillary number : 
We assume that E is much less than unity, which gives the following condition on 

Note that (2.8) is stronger than the usual condition C 4 1 for other problems where 
surface tension dominates viscous forces. This analysis becomes invalid for all values 
of C on a perfectly flat solid surface (where a = 0 ) ,  since the right-hand side of (2.8) 
is zero. In  this case the details of the motion on a lengthscale 6 of the contact line 
are always important, and beyond the scope of this paper. However, Jansons (1985) 
showed that even small amounts of roughness can give a large perturbation to the 
contact angle. 

The condition (2.8) on C is appropriate for many other types of solid surface with 
one-dimensional periodic roughness ; for example a sinusoidal surface where the 
contact line jumps from the point of maximum down slope to an equivalent position 
one wavelength ahead. 

3. The relaxation process of a fluid-fluid interface 
Consider the evolution of a fluid-fluid interface that is flat and perpendicular to 

a plane solid surface except for a region in the neighbourhood of the contact line (see 
figure 2). In this neighbourhood the fluid-fluid interface is displaced forward beyond 
its mean level and relaxes under the action of surface tension y alone. The viscosities 
of the two fluids are assumed equal, which simplifies the analysis but does not 
significantly affect the physics (Rallison & Acrivos 1978). In figure 2 the solid line 
represents the initial position of the fluid-fluid interface and the dotted line the final 
(or asymptotic) position, where the entire interface has relaxed. However, convergence 
to the dotted line is pointwise rather than uniform in y. The results of this section 
will be used in $4, to model the motion of the interface in the neighbourhood of the 
contact line, where we do not need to know the behaviour accurately for short times 
(when the equations of motion are nonlinear). Thus we restrict our attention to the 
limit of large time. 

To derive the linearized governing equations for the fluid-fluid interface we first 
consider the full nonlinear description. The evolution equation for a three-dimensional 
fluid-fluid interface S driven by surface tension at zero Reynolds number for an 
unbounded fluid, i.e. no solid boundaries (Rallison & Acrivos 1978), is given by 
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Y 

where u(x) is the velocity of the interface at  a point x, y ~ b )  n w )  is the stress jump 
across the interface (with curvature ~ ( y )  and normal nw)) at pointy and 

rr 
1+- 

is the Green function for Stokes flow (Batchelor 1967) where r = x-y, r = Irl and p 
is the viscosity of both fluids. The boundary condition at infinity in the analysis of 
Rallison & Acrivos (1978) was that the velocity field tended to a linear ambient flow. 
However, we assume that the fluid velocity tends to zero as r tends to infinity. 

To derive the evolution equation for a fluid-fluid interface over an infinite solid 
plane boundary with a condition of no-slip at  its surface, we must add to (3.1) terms 
to include the image system of Blake (1971). The image system for a point force (or 
Stokeslet) of strength s, and perpendicular height h above the solid surface consists 
of an equal and opposite Stokeslet, a Stokes-doublet of strength 2hs and a source- 
doublet of strength 2h2s all at the image point. This implies that the flow u(x) above 
the plane, with normal m, driven by a Stokeslet s, at y, is given by 

u(x) = so 

where r = x-y and R = x-y+2mm-y. 

system by integration from - co to + co in the redundant variable, giving 
From (3.2) we can find the corresponding Green function for the two-dimensional 

J,(r) = - 1 pop(:) 1 +;I, 
47Y 

(3.4) 

where r now refers to the two-dimensional system. Though the two-dimensional Green 
function is unbounded as r tends to infinity for an unbounded system, the addition 
of an infinite solid plane boundary has the effect of renormalizing the far field, which 
is that of a Stokes-doublet. 

Integrating (3.3) and defining the fluid-fluid interface at  time t by z = $(y, t )  where 
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y and z are the Cartesian coordinates perpendicular to and along the solid surface, 
we find the linearized two-dimensional equation 

where denotes a time and subscript a space derivative, and 

Equation (3.5) has a similarity solution of the form #(y ,  t )  = $ ( y / t ,  l) ,  where we 
have taken the time t corresponding to the initial condition equal to 1. It can be shown 
(Appendix A) that the long-time solution for any initial condition of (3.5) resulting 
from the rapid jump of the contact line tends to a similarity solution of this form. 
This can be argued informally by extrapolating the similarity solution back to t = 0, 
where its initial condition is a Heaviside unit function. Since any initial condition 
being considered will appear to be a Heaviside unit function on some horizontal scale 
(or resolution), on the same scale the solution will be given approximately by the 
similarity solution for later times. The structure on smaller lengthscales will die away 
owing to the smoothing action of surface tension. 

To determine the similarity solution define Y = p y / y t ,  H = ph/y t  and 
f ( y )  = (d/d Y )  q5( Y ,  1). Then from (3.5) we find 

- Yf( Y )  = jm G ( 9  df ( H )  dH, 
0 H d H  

which can be solved numerically to give a solution of the form 

(3.7) 

where F is a non-dimensional function of a non-dimensional argument, with F(0)  = 1 
and F(z)+O as z+m.  Since in $4 we do not require the similarity solution F itself, 
but rather an infinite sum of such solutions, we shall not discuss the numerical results 
here. 

4. Motion of a fluid-fluid interface over a periodic solid surface 
Consider the motion of a fluid-fluid interface over a periodic solid surface in the 

limit of small e (i.e. where the timescale for rapid jumps is much shorter than that 
for the whole interface to move) ; later we also determine a lower bound on e.  In  this 
section, since we are interested only in the leading-order terms, the behaviour of the 
fluid-fluid interface on a timescale !ljump is of no importance; though we assume 
contact lines can move. We also assume that the macroscopically apparent speed U 
of the contact line is constant ; however, this condition is relaxed later. 

In  $3 the motion of the fluid-fluid interface for a system that is a t  rest, except 
for the motion due to the rapid jump, was described by a similarity solution in the 
limit of large time. However, for a system in steady motion far from the contact line, 
the total velocity field includes a contribution from each of the similarity solutions 
due to each of the rapid jumps that have occurred. 
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4.1. The problem to be solved 

We can now pose the problem that we need to solve in order to  determine the motion 
of the fluid-fluid interface (to leading order in 8 )  on a lengthscale much less than 
macroscopic dimensions. From the solution we can derive the matching condition for 
a macroscopic flow problem with a contact line moving over a solid surface with 
one-dimensional periodic roughness. We assume that a mechanism for a ‘rapid jump ’ 
of the contact line exists without stating the precise nature of this motion, and later 
we show that the solution is independent of the particular mechanism. This implies 
that, though the estimates for the error terms and the range of validity are ad hoc, 
the final solution (to leading order) is well defined. 

Since we are interested only in a leading-order solution in e ,  we may again use 
linearized equations. We must find a solution of (3.5) that  satisfies the boundary 
conditions for the rapid jump, namely one that has the correct contact angle a t  the 
moment just before the jump takes place. For algebraic simplicity we take the contact 
angle just before the jump as in. We also require a boundary condition at inifinity, 
or more precisely, we need the correct asymptotic form for the interface shape in the 
limit of large y .  Finally, the required solution must be periodic, in the sense that after 
a time a / U  the fluid-fluid interface must return to  its initial position except for a 
translation of magnitude a in the direction of motion. 

The boundary condition for large y requires some thought. However, this has 
already been discussed in detail by Dussan V. (1976), and we shall refer to  her work 
later in this section. 

To solve this problem, we first make an intelligent guess at the solution, and then 
prove that this solution is correct and satisfies the boundary conditions. 

4.2. The time-dependent $fluid-jluid interface shape 
Consider the sum of the similarity solutions for all the rapid jumps that have occurred 
if the contact line has been moving in the same direction for a long time ; later, this 
time is estimated. If the sum is taken naively it is divergent; however, we may add 
a linear term to each of the similarity solutions without changing their time- 
dependence. This can be done to satisfy the boundary conditions a t  the contact line 
at the instant just before the next rapid jump: thus 

for 0 < t < a /U.  Since each term in (4.1) is a solution to  the governing equation (3.5), 
then so too is the sum, since this equation is linear. The boundary conditions are also 
linear to  the same order of approximation, since they are applied at a plane 
z = constant (for simplicity taken as zero). We now show that (4.1) satisfies all the 
other boundary conditions, namely that it has the correct behaviour for large y and 
is periodic in the sense described earlier. 

Proof that the solution is periodic 

q ( y , ; ; ~ ) - $ ( y , o ; ~ )  = aLim c 

Consider 
N 

N+cc n-1 
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All but the end terms in the sum cancel, in which case the right-hand side of (4.2) 
reduces to 

aLim F(L)  = a, 
n+m mC-l 

(4.3) 

as required. This verifies that the fluid-fluid interface advances a distance a in a time 
all7 for all values of y greater than zero. A t  y = 0 this solution does not give any 
motion since the contribution from the rapid jump at t = a / U  is not included. 

Solution at large y 
We now determine the large-y behaviour of $(y, t ;  C) as given by (4.1). By large 

y, we mean that y is much greater than aC-l, and we restrict ourselves to this limit. 
First consider an informal calculation to determine the nature of the large-y 
behaviour, followed by a discussion of a numerical verification of the procedure (see 
also Appendix B). The numerical calculation also provides the value of a coefficient 
that is beyond the scope of the first method. We use the fact that the similarity 
function F is such that F(0)  = 1 and F(z)+O as z+ 00. Though this calculation is 
by no means rigorous, it is informative and the result is checked numerically and 
supported by Appendix B . 

It is easier to work with &(y, t;  C) than $(y, t ;  C). From (4.1) we find 

for 0 < t < a / U .  
Inspection of (4.4) reveals that the dominant contribution to the sum is for n in 

the range 1 4 n 5 y/aC-l). For n in this range the factors yt/p+naC-I are 
approximately mC-l, which implies that &(y, t; C) is independent of t for large y. 
Thus 

$JY 9 t i  C) - $JY , 0 ; C) 

as y/aC-’ + 00. (4.5) 
OD [F’(y/mC-’)-F(O)] 

= C  I: 
n n-1 

The term in square brackets in (4.5) is approximately equal to - -F’(O) for n 
much less than y/aC-’, and tends to zero as n tends to infinity. Since the sum of 
n-l from 1 to N is asymptotic to log (N) as N +  00, we can determine the right-hand 
side of (4.5), to leading order, by truncating the sum at n of the order y/aC-’; 
the precise point of truncation does not matter. This implies, from (4.5), that 

where k is an order-unity constant; this is the constant that we determine numerically 
to complete the matching condition for the outer flow, and is given in terms of F in 
(B 4). Equation (4.6) is of the same form as for the ‘slip models’ of Dussan V. (1976), 
and enables us to define the effective ‘slip length’ for the current model as aC-’ (to 
an order of magnitude). Dussan V. (1976) has shown that an equation of the form 
of (4.6) is all that is required to determine the macroscopic flow field. 

If we determine the large-y behaviour of 4 ( , t; C) numerically we find that the 
constant k of (4.6) has the value log (1/0.140), which means that (4.6) can be rewritten 
as 

Y Y  

(4.7) 
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FIGURE 3. The fluid-fluid interface shape at  equal time intervals over one period. Note that in this 
figure a haa been taken equal t o  fLslip; this makes the slope of the interface appear larger than 
in practice. 

This seems to indicate that a good definition of the effective ‘slip length’, Lslip is 
0.140 aC-’. 

The numerical solution for the fluid-fluid interface shape in the neighbourhood of 
the contact line over one period of the motion is shown in figure 3. This figure has 
been scaled so that a is equal to +Aslip, which makes the slope of the interface appear 
larger than in reality (since the theory is valid only when a is much less than L,,,,). 
Even at a height of 5 Lslip the motion of the fluid-fluid interface is almost steady, 
though the distance between the first and second curves is slightly larger than 
between subsequent curves. However, in the limit of large height the motion of the 
fluid-fluid interface is steady, and the interface shape tends to that of the ‘ slip models ’ 
of Dussan V. (1976) if the ‘slip length’ is chosen suitably). 

Note that even though the time-dependent solution considered here is non-singular, 
its time average, to leading order, is the classical solution (B 4) and therefore is 
singular at the contact line. (In Appendix B this observation is used to determine 
F’(O).)  The singularity in the current model is part of the rapid jump, and so the nature 
of the rapid jump does not determine the matching condition, to leading order, for 
the macroscopic flow field for a sufficiently ‘slowly moving’ contact line. However, 
details of the rapid jump do determine what is meant by ‘slowly moving’. The reason 
we can determine the matching condition for the outer flow is that the contact-angle 
boundary condition is satisfied; this is not possible if we attempt to use the 
time-averaged solution, even though i t  has the same limiting behaviour for large y .  
The key is to isolate the singularity a t  the contact line in the rapid jump, which a 
model assuming steady motion of the fluid-fluid interface could never do. 

5. Surfaces with two-dimensional random roughness 
Consider the motion of a fluid-fluid interface over a surface with two-dimensional 

random roughness. Jansons (1985) assumed solid surfaces to be flat except for a 
random array of isolated rough patches that covered only a small area fraction of 
the solid, and considered the wetting dynamics theoretically in the limit of zero 8. 

Though these surfaces are only idealizations, they do show many of the observed 
characteristics of real surfaces, for example contact-angle hysteresis and the stick-slip 
phenomenon. The size of the jumps in the stick-slip motion of the contact line is on 
a scale large compaed with roughness dimensions and depends on a ‘ macroscopic ’ 
lengthscale. 
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We expect the wetting behaviour of these surfaces to be similar to one-dimensional 
periodic surfaces, since both exhibit contact-angle hysteresis (and stick-slip). In  $4 
we determined the matching condition for a macroscopic flow without knowing the 
mechanism of contact-line movement ; this was possible because the viscous stress 
singularity was isolated in the rapid jump. If stick-slip is present the minimum energy 
dissipation for a contact line moving over a given area must be non-zero, since 
however slowly the interface moves far from the contact line the motion a t  the wall 
will undergo rapid jumps. Each rapid jump dissipates a finite energy that is 
determined, to leading order, by the roughness and not the mean speed of the contact 
line. (This is how stick-slip and contact-angle hysteresis are linked.) 

For surfaces with random roughness the area covered by a rapid jump of the 
contact line is itself a random quantity. At zero E the average area covered (to an 
order of magnitude) is 

1 
up c log - L, 

C 

where ap is a typical dimension of a rough patch, L is a ‘macroscopic’ lengthscale 
(e.g. the size of the entire drop) and c is the area fraction of rough patches (Jansons 
1985). However, in the limit of small (but finite) E ,  from an inspection of Jansons’ 
analysis it is clear that the ‘macroscopic’ lengthscale must be replaced by the 
lengthscale of the quasi-static neighbourhood of the contact line, namely the effective 
slip length Lslip. Thus (5.1) becomes 

To determine Lslip explicitly we need to know the ‘typical’ forward displacement b 
of the contact line in a rapid jump rather than the area covered; since it is b that 
corresponds to the wavelength of a surface with periodic roughness, i.e. 

Lslip = bC’. (5.3) 

However, a determination of b would be complex and may be the subject of future 
work. For now we shall note that (5.2) suggests that b (considered as a function of 
Lslip)  is such that 

b(LSliP) --f 
UP 

and b(’s1ip) = 4Lslip) (5.4) 

as Lslip+ CO. This implies that 

as C tends to zero; therefore in this case Lslip is more velocity-dependent than for 
surfaces with periodic roughness. 

This helps to explain why theories assuming constant ‘slip lengths ’, need ‘slip 
lengths ’ larger than roughness dimensions to give agreement with experiment 
(Dussan V. 1976). 
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6. Conclusions and discussion 
The main conclusion is that  a fluid-fluid interface moving over a rough solid surface 

can be described, to leading order in the slowness parameter E ,  by continuum 
quantities (except during a rapid jump). Hence the matching condition for a 
macroscopic flow problem, in this limit, could be determined independently of the 
mechanisms of contact-line movement because the non-integrable viscous stress 
singularity could be isolated (in the rapid jump). 

The quantity that corresponds to the ‘slip length ’ in the work of others is shown 
to be velocity-dependent, and proportional to aC-’ for surfaces with one-dimensional 
periodic roughness. However, it is clear that  the analysis becomes invalid if aC-’ is 
of macroscopic dimensions, and so this gives a lower bound on the value of 43. Since 
the effective ‘slip length’ obtained is much larger than roughness dimensions, the solid 
surface may be considered to be flat in the macroscopic description. 

I n  $4 we showed that if the contact line had been moving a t  a constant speed for 
a ‘long time’, the fluid-fluid interface is described by a sum of similarity solutions 
(for a contact line that had made one rapid jump). From (4.1) it  is clear that the term 
‘long time’ means that the influence of the contact line has reached macroscopic 
dimensions, namely that the time t is greater than ,uQ/y, where E is a macro- 
scopic dimension of the flow. Thus the analysis is valid for systems where the 
macroscopic apparent speed of the contact line is time-dependent, provided that 
the timescale for changes in speed is greater than ,uE/y. However, the analysis 
could be extended so that changes in speed could be on any timescale greater than 

I n  $5 we argue informally that the velocity dependence of the ‘slip length’ for a 
solid surface with two-dimensional random roughness will be stronger than for a 
surface with one-dimensional period roughness. I n  the models presented by Dussan V. 
(1976), which assume a constant ‘slip length ’, the value of the ‘slip length’ that gives 
the best fit with experimental results is much larger than roughness dimensions in the 
limit of small C. The velocity dependence of the ‘slip length’ on surfaces with two- 
dimensional random roughness also explains why the jumps in the ‘stick-slip ’ motion 
of the contact line decreases in size with increasing speed (see (5.2), (5.3) and (5.4)): 

I n  order for the ideas of this paper to  be verified it is necessary to extend the 
analysis of $4 to  cover random roughness, as discussed briefly in $5. For experimental 
purposes a precise equation relating the size of the jumps in the ‘stick-slip’ motion 
to the effective ‘ slip length ’ would give the best test of th  velocity-dependence of the 
‘slip length ’, since i t  enters measured quantities algebraically rather than logarith- 
mically (as is usually the case). 

PLsliplY. 

Appendix A. Long-time limit of the relaxation process 
We now justify the statement made in $3  that the long-time limit of any 

disturbance to the fluid-fluid interface that has a fixed contact line a t  z = 1 and O(y-’) 
as y tends to  infinity is the similarity solution F. 

From (3.5) we find 

where $( Y ,  t )  = #(y, t )  with Y = ,uy/yt and H = ,uuh/yt. With this transformation, the 
time-independent solution of (A 1) is the similarity solution. Consider solutions of the 
form $h y ,  t )  = 4) B( Y ) ,  (A 2) 
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(A 3) 
n 
t 

A + - A  = 0 then from (A 1) we find 

and 

where n is the separation constant. From (A 3) we find 

A(t)  = t-n 

and from (A 4) we can show that 

B( Y) - constant Y-n, (A 6) 

as Y tends to infinity. 
We require that the expansion for $ be appropriate for any initial condition for 

the relaxation process. This initial condition is the fluid-fluid interface shape resulting 
from the rapid jump of the contact line; we also require that the interface has had 
time to flatten under the action of surface tension so that we can use the linearized 
governing equations. Even though the rapid jump cannot be modelled by continuum 
mechanics in a neighbourhood of size S of the moving contact line, outside this region 
the effect of the complex physics is equivalent to a distribution of point forces at its 
boundaries. Using this distribution of point forces and the stress jump at the fluid-fluid 
interface, by means of a multipole expansion, we could construct an asymptotic series 
for the far-field velocity distribution. From this far-field velocity distribution the 
fluid-fluid interface shape could be determined in the limit Y tends to infnity. We 
would find that the interface shape has an asymptotic sequence Y-n for positive 
integers n. Hence, together with (A 6), this implies that the separation constant n 
can be taken as a positive integer. 

We can solve (A 4) exactly for integer 7~ in terms of the similarity solutions F, 
namely 

B( Y )  = t n ( $ r  F( Y ) .  

This result can be verified directly by substitution. For convenience define 

Fn( Y )  = tn (3” - F( Y ) ,  

where = F. Then, if this set of solutions is complete, the general solution is 
co 

$( Y ,  t )  = E cn t-n Fn( Y ) ,  
n-0 

where the c ,  are constant coefficients. This implies that the general solution for $ ( y ,  t )  
is 

where the ck are dimensionless coefficients determined from the initial conditions. 
Though I have failed to prove completeness of the solution set, one important 
necessary condition, which can be proven, is that shifting the origin of time does not 
change the form of the solution. From Taylor’s Theorem we find 
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for all to and positive integers m. From (A 11) and (A 9) it follows that shifting the 
origin for time will not change the form of the solution (A 9) but only the coefficients. 
This is an important result since no obvious origin for t (for the linearized equations) 
exists. 

Assuming completeness of the solution set, from (A 10) we find that in the limit 
$/pa tends to infinity 

and so tends to a multiple of the similarity solution F, as required. 

Appendix B. The time time average of &(y, t ;  C) and the value of F’(0) 

Consider the time average of (4.4) over one period of the motion, where we define 

namely 

The right-hand side of (B2) can be simplified by interchanging the order of 
integration and summation, thus 

aK 

$,(y;C) = C lim ( S ” f r ~ ) d t - F ( O ) ( l o g K + y , )  Yt 
K+m 0 

where ye is Euler’s constant (not to be confused with surface tension). From (B 3) 
we find 

compare (B4) with the matching condition (4.6). Equation (B4) shows that the 
time-average of the unsteady motion of the fluid-fluid interface is simply the classical 
(steady) solution, which was to be expected since (3.5) is linear in $(y, t ) .  

Equation (B 4) also provides an easy way of determining F’(0). Since (3.5) is linear 
the time average of a solution is itself a solution. From (4.3) we also know that 
d(y; C) = U ,  which gives 

Hence, combining (B 4) and (B 5) we find that 
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